
 

 

Comparing two models of epistasis 

The point of this document is to compare and contrast an alternative model of allelic interactions to the 

model that we present in our upcoming science submission(henceforth the Science Submission Model, 

or SSM).  First I go through the model, and discuss the various methods by which its parameters can be 

determined and how its predictive power changes under different parameterizations.  Then, I contrast 

this model with the Science Submission Model to show how despite their very different dynamics, they 

perform in fundamentally similar ways. 

Finally I conclude by showing that although the models are equivalent, and examination of the available 

parameter space shows that if the simple linear model was true,  we would be very unlikely to obtain as 

good a fit to the data as we do with our SSM, which implies that the SSM as it stands is the correct one. 

 The New Model 
A second model of epistasis posits, henceforth the Simple Linear Model or SLM, posits that each allele 

has a set effect on the fitness of a strain, that is for the fitness of the single mutant (labeling the 1st, 2nd, 

3rd and 4th mutants as         respectively) would be: 

          

          

            

And in general that                      where     is an indicator variable equal to 1 if the 

relevant mutation is present in genotype   and 0 otherwise. 

Different Ways to Parameterize the Model 
Our data from this study can be represented in the adjoining matrix, where the 

fitness is the value we are trying to predict and the columns A,B,C,D are 

representative of the information we will use to predict these fitnesses.  That is, 

they are the value of the indicator variables in the above model for the presence 

of a beneficial mutation on a genotype.   

In order to fit this model, we can use the entire data matrix (that is all fitness 

observations) simultaneously, to find the set of parameters which by the least 

squares criteria give the single best fit.  This approach shows a very good fit of the 

model to the data, giving an R2 value of .997, which is a nearly perfect fit given 

the errors on our measurements.  

Fitness A B C D 

1.935 1 1 1 1 

1.752 0 1 1 1 

1.784 1 0 1 1 

1.812 1 1 0 1 

1.435 1 1 1 0 

1.623 0 0 1 1 

1.614 0 1 0 1 

1.281 0 1 1 0 

1.639 1 0 0 1 

1.32 1 0 1 0 

1.299 1 1 0 0 

1.509 0 0 0 1 

1.142 0 0 1 0 

1.096 0 1 0 0 

1.166 1 0 0 0 

1 0 0 0 0 



 

 

 

However, this does not provide an entirely fair comparison to the SSM because the parameters in the 

SSM were estimated with only data from the first mutational step.  A simple estimate of the effect of a 

mutation on the fitness of a strain can be obtained for any genotypes connected by a single mutational 

step that adds this allele.  For example, the effect of the   allele can be estimated for any combinational 

state,    , of the other three alleles as               .  Using this formulation and just the 

fitness effect of the alleles when introduced on the wildtype background, we can again see how well we 

can predict the fitness of all genotypes simply from the single mutant genotypes: 

 

By using only these four data points, we can obtain an incredibly good prediction of the fitness values of 

all of the genotypes (the line is equal to y=x).  Similarly, we can use just the information obtained in the 

last mutational step to estimate the effect of each beneficial mutation.  That is, what if we only knew 

what happened when the mutation was added to a genotype with all other mutants already there, 

basically if we only removed the allele from the fittest genotype instead of adding it to the wildtype.  
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Again, we see that the prediction is incredibly good, with only four data points we can predict the fitness 

values of the remaining 11 incredibly well.  If generally true, this means that there is no epistasis for this 

trait and we can perfectly predict a fitness landscape of    genotypes with only   observations.  This 

is pretty efficient and awesome. 

 

Finally, we can ask what happens if instead of using either all the mutational effects in the first step, or 

all of the effects in the last step,  we use the fitness differences involved in going from 2->3 mutations, 

or combinations of the first, second, third or final step to estimate the model.  I haven’t done this yet 

but am confident that the results for any combination would still be as good because our prediction as it 

stands is essentially perfect, meaning that any combination used to estimate must give excellent results. 

Model Comparison 
The SLM and the SSM are very different, yet both provide similar predictions and behave in similar ways.  

This section explains the reasons that they agree and do not agree. 

Diminishing returns is a feature of both models.  In the SSM this is a consequence of the “cost” portion 

of the model, any mutation that diminishes the cost shows diminishing returns.  In contrast, in the SLM, 

diminishing returns is simply a natural consequence of the model structure.  For illustration, consider a 

fitness landscape in which every allele had the same constant effect (   on the growth rate.  The 

proportional effect of a beneficial mutation added to a background that already had   beneficial 

mutations would then be equal to: 
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Clearly, as          which is clear diminishing returns behavior.  In the SLM model, all alleles 

show diminishing returns epistasis.  However, in the SSM only the mutations that have a cost reduction 

component shows diminishing returns. This allowed for pntAB to not show diminishing returns in the 

SSM, and if the SLM is correct, 

we must explain why we did 

not find evidence for 

diminishing returns with this 

allele.  Two points are relevant 

here.  First, although figure 3B 

in the science submission is 

reasonably flat, plowing up the 

y-axis and comparing it to the 

results one would obtain if the 

SLM were completely correct 

shows that the trend of 

diminishing returns, while not 

prominent, is hinted at by the 

data (hence the small cost 

reduction in the SSM for this 

allele).   

  



 

 

Model Equivalency 
 Why is it that we would expect both models to give such similar results, despite their different 

formulation.  In the SSM, the fitness is given as: 
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Below, I introduce some matrix notation and calculate the expected residuals of the linear model fit if 

the SSM is correct, I do this to show how the models are able to give equivalent results.

 

Now for matrix notation: 

                                                              

               

                              

                            

                     

                                      

                                  

                      

                             

I also introduce the following notation, for a vector   the operation      means creating a new vector 

whose elements are equal to e raised to the old vectors elements, that is    

  
  
  

 
    
   

   
 .   

For our particular model, these vectors are represented as below. 

 

  

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

    

     
     
     
     

     

     
      
       
       

    

    
    
    
    

 

Assuming that the SSM is correct, this implies that the fitness of each strain can be calculated as below: 



 

 

     

     

                        
        

Now, if this model is true and we instead fit a linear model on the dataset, how would the results look?  

There are several ways to fit the data to a linear model.  Either all datapoints could be used, or just the 

first mutational steps, or any combination there off.  If just the first mutational steps are used, then: 

                           
         

            

Writing in this notation allows us to calculate the expected residuals between the linear fit model and 

the actual values as: 

                      

               
                      

            

Any element of   is going to be equal then to: 

           
                  

      
          

                
                            

            
         

             

                   
       

               
                    

               

                   
       

               
                    

               

  

We note that the pattern shown below (where   is some vector) is found throughout the equation for 

the residuals.  We explore this pattern to show how it influences the residuals. 

                
  

Since    is a vector of 1's and zeros the only terms that show up in this are the corresponding terms in   

where the    value is positive, suppose indexes       in      are positive, then:  

                
                        

Here we can give an alternate definition for      
 

  
 

  

  
 

  

  
  allowing us to rewrite: 

                       
         

 
   

where          are terms on the order of two values from the vector  .  Similarly: 



 

 

                   
     

 
        

     

 
        

     

 
             

         

Stating both of these more generally we see that 

                
 

 
                

                 
    

 
  
  

     
          

         
 

 
              

    
 
             

     

Taking the difference of these approximations we get: 

                
            

  
 

 
          

   

 

   

 

The notation above has some important interpretations.  The term         
           is simply the 

number of beneficial mutations present on the     background.  Similarly, for the      background  
 

 
             
 
    is equal to the summation of the effect of each allele present multiplied by every 

other allele present, excluding multiplications to itself, which cancelled out with the other term.  For 

small    these terms are all small, and on a background with   beneficial alleles there are      of 

them, meaning this error term gets larger with more beneficial mutations present and is absent with 

one mutation present. 

Since the    values are small, we can use this approximation to obtain a reduced form of   : 

              
  

 

 
             
 
         

               
                    

               

   
 

 
          

   

 

   

      
               

                    
    

Here we see that the residual value for the     alleles is a composed of sums of products of the  s, (the 
 

 
             
 
   ) as well as another term that is scaled by the    parameter (the            

       
                    

     .  In order for the residual values to be small, this value must also be 

small.  This term is the difference of values determined by the   values,                  
   as well as a 

second term determined by the   values,                  
   .  As shown before, because the   values 

are generally near  , this difference involving them can be approximated as: 

                 
                             

where the   is representative of the other smaller terms and increases with more alleles present or with 

alleles of larger effect (which either increase the number of additional terms or increase the size of 

these terms).  However, because in general the values in   do not appear to be near zero, we cannot 

use the same approximation for                  
  .  However, the behavior of this term can be 

adequately described by noting that as before the difference is of the form: 



 

 

                     
     

      
    

Because every      , the more of these terms that are multiplied (more alleles present), the smaller 

this value becomes, while at the same time the more of these that are added, the larger the summation 

of (    
     

   ) becomes.  This means that this difference is zero if only one mutation is present, 

but becomes increasingly negative with more mutations present. For the particular values in our model, 

this increasing magnitude on backgrounds with more mutations allows the term based on the   values 

to roughly keep pace with the term based on the   values.  However, for larger values the magnitude of 

the   term begins to dominate, meaning that the final value scaled by    and added to the residual 

becomes increasingly negative.  However, because the error introduced by the first half of the equation 

is becoming increasingly positive at the same time that this term scaled by    is becoming increasingly 

negative, this actually allows for an improved model fit.  This explains a trade off in the    parameter, 

with values to small the fit is made poorer because there is no compensating effect, resulting in 

increasingly positive residuals.  In contrast, at high values the term multiplied by    begins to dominate 

the error and increasingly negative residuals are seen.  Such a fortunate counter balance in the model 

comes at our present parameter settings, and in fact is true only for a very narrow range of    values.  

However, discordance between the two models will increase for an increasingly larger number of 

mutations added to the different backgrounds.  

To draw this point out a bit more, I will also compare how an either "pure cost" or "pure benefit" model 

would behave compared to a linear model.  It shows that the errors in either model increase with 

additional mutations, but is of a different sign. 

What if just a multiplicative model were estimated? 

The canonical epistasis model can be represented as a         
 
    where   are the number of 

alleles considered and      is the effect of the     allele on fitness.  If this model were true, the 

estimated effects from the first step mutations in the linear model would be equal to         , as 

before we could then calculate the residuals as: 

         

                                             

This can be rewritten defining           lets us rewrite the value and make the same approximation 

as before (as most of these values will be near zero): 

                  

               
           

   
 

 
          

   

 

   

 

That is, when a linear model is fit to a biological reality that mirrors the classic epistasis model, the result 

is the residuals become increasingly positive as more beneficial mutations are added or the mutations 

are of larger and larger effects. 



 

 

What if just a cost model were estimated? 
Alternatively, we can regard all evolution as reducing a cost imposed by some trait, and thus consider all 

adaptive walks as a climb up a summit with a peak at a known height.  In this parameterization we could 

consider fitness to be equal to                
 
   , where        is the proportion of the 

cost that is reduced by a given beneficial mutation, and making the parameterization of           

allows us to write the fitness values and residuals as: 

             
   

             

                     

                  
                              

      
                   

  

                      

As before, for multiple mutations present on a background this residual becomes increasingly negative 

and becomes equivalent to:                          , where delta is a positive term that is 

composed of the sum of mutational effects minus the products of these effects.  Although small    

values would reduce the size of all residuals, it would also imply that not much of an increase in fitness 

was possible and so this adaptive walk would not be biologically very interesting. 

Which Model is Right? 
With such concordance between the two models, it is natural to ask which model we might prefer?  The 

SSM and the SLM are able to agree with each other because of a happy scaling between the cost and 

benefit terms.  Although the discordance between the two models is expected as additional mutations 

are added, so in theory we could use the other mutations to test this.  Alternatively, we could ask, if the 

simple linear model were true, how likely would we be to obtain such a good fit with the SSM?  That is, 

is there real significance to our model?  Since the SSM parameterizes the benefit as the difference 

between the observed fitness and the observed cost, it is natural to ask if random values for the plasmid 

cost (    and for the reduction in this cost provided by each mutation          ) would allow for an 

equivalently good fit.  Simulations are shown below for these values.   

 

The results show that if the SLM were true, we are extremely unlikely to have obtained as good a fit to 

the data if we used values that were unrelated to the biological reality.  This gives strong support to the 

SSM being the correct one.



 

 

 

If the SLM were true, would we expect to be able to always fit a model that showed good agreement 

with the data? 

 

Table 1: No Constraints on Parameters 

Test C0     Fitness Values 
of 1st Step 
mutations 

Model 
Fit 

P-Value for 
As good r 
better 
result 

Conclusion 

Can    
vary? 

.261*Beta(1,10) Fixed Fixed Cost 
Benefit 

.14 The particular    
parameter is 
reasonably 
important to the fit 

Can cell 
folding 
vary? 

Fixed Beta(1,1) Fixed Cost 
Benefit 

.017 The particular   
parameters were 
very important 

Can both 
vary? 

Beta(1,10) Beta(1,1) Fixed Cost 
Benefit 

.007 The particular 
combination of 
parameters is very 
important. 

Table 2: Constrains enforced      

Test C0     Fitness Values 
of 1st Step 
mutations 

Model 
Fit 

P-Value 
for As 
good r 
better 
result 

Conclusion 

Can    
vary? 

Beta(1,10) 
Truncated at 
.261 

Fixed Fixed Cost 
Benefit 

.145 The particular    
parameter is 
reasonably 
important to the fit 

Can cell 
folding 
vary? 

Fixed Uniform 
over range 

Fixed Cost 
Benefit 

.0252 The particular   
parameters were 
very important 

Can both 
vary? 

Beta(1,10) 
Truncated at 
.261 

Uniform 
over 
allowable 
range 

Fixed Cost 
Benefit 

.008 The particular 
combination of 
parameters is very 
important. 

 

 

 



 

 

 
Figure C0: Demonstration of how the model fit changes for different    values.  The green line 
represents the    value at the empirically determined model settings, and only values in the 
range              provide  an equivalent  or better fit.  The  (1,10)  distribution has 
significant density in this region giving the p-value shown in the table, but this value is entirely 
dependent on the assumption that the distribution of costs will have significant density in this 
narrow range.  The red line indicates the highest    value possible with this dataset that 
maintains the constraint that      for all  .  Note that the         distribution spans the 
domain 0 to 1, and so does not always allow for this constraint to be met. 
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Figure        :  Distribution of    values from >825,000  simulations with 
   parameters drawn from a truncated         distribution and the 
  vector drawn uniformly from the 4 dimensional unit hypercube and 
constrained so the    .  Although only a minute fraction (.8% )of these 
values give a fit as good or better than that from the empirically determined 
values, in general a large area of this parameter space provides a good fit, 
with ~65% of values giving an      . 

 

 
Figure  : Green points represent simulated   values whose SSE was in the lowest 1% of all simulated 
values (n=100,000).  Each theta value was randomly drawn from a uniform(0,1) distribution, and the 
empirically estimated values are shown in red.     
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