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Materials and Methods 
 
Plasmid and Strain Construction 

All strains and plasmids used are indicated in Tables S1 and S2. All plasmids were constructed 
and maintained in Escherichia coli DH5α or 10-beta strains from New England Biolabs (Ipswich, MA, 
USA), and were transferred to (or from) Methylobacterium extorquens AM1 strains via conjugation using 
tri-parental mating with the helper strain pRK2073 (21). 

Two engineered Methylobacterium (EM) strains, one pink and one white (defective carotenoid 
biosynthesis due to a disrupted crtI502 allele generated by cre-mediated excision of the majority of 
ISphoA/hah-Tc from the original white S234-13 transposon mutant) (22), were used as ancestors (as a 
lineage label, see below). A pink strain of WT (i.e., CM501) (23) deleted for the mptG gene (encoding β-
ribofuranosylaminobenzene 5′- phosphate synthase) (24) required for biosynthesis of the 
tetrahydromethanopterin cofactor used by the original formaldehyde oxidation pathway, CM508, was 
generated previously (23). The ΔmptG allele was introduced into the white WT strain, CM502 (23), using 
a previously described cre-lox allelic exchange vector pCM253 (14) carrying a ΔmptG::kan allele, and 
then removing the kan cassette using the pCM157 cre-expression vector (25) to ultimately generate the 
white, unmarked ΔmptG strain CM624. The original plasmid (pCM106) generated to express the GSH 
pathway from the strong, native promoter of methanol dehydrogenase (i.e., PmxaF) carried the tetAR 
tetracycline resistance marker, which alone caused poor growth (14). Therefore, a new plasmid, pCM410 
(fig. S6), was generated by replacing tetAR with the kanamycin resistance marker (kan) from pCM160 
(26). This plasmid was introduced into CM508 and CM624, respectively, to generate CM701 and 
CM702, the pink and white EM strains used as ancestors for these populations. 

To facilitate fluorescence-based fitness assays using flow cytometry (27), fluorescent EM strains 
isogenic to CM701 and CM702 except for bearing the mCherry gene expressed from the moderate 
strength, constitutive PtacA promoter in the katA locus were generated as above except for starting with 
two mCherry-marked WT strains: CM1175 (pink-colored) and CM1176 (white-colored) (27). Deletion of 
the mptG gene from these strains (using pCM253 and pCM157) resulted in CM1225 and CM1226, 
respectively. The pCM410 plasmid was then conjugated into these ΔmptG strains to generate fluorescent 
EM strains CM1231 and CM1232. The mCherry fluorescent marker was selectively neutral under tested 
conditions. 

To facilitate genetic manipulations with CM1145, a plasmid-free strain derived from this evolved 
isolate was obtained by propagating CM1145 in succinate liquid media without either kanamycin or 
methanol. In the absence of either selection to maintain pCM410, cells grown in liquid media for 18 
generations were first plated on agar plates supplemented with succinate. Isolates were then tested for 
their ability to grow on methanol agar plates or succinate plates supplemented with kanamycin (50 
μg/ml). One such isolate, CM1276, unable to grow on either condition was chosen. This plasmid-free 
strain did not appear to acquire additional fitness-affecting mutations as reintroducing pCM410 bearing 
the fghAEVO evolved allele into CM1276 resulting in a strain as fit as the original CM1145. The two 
plasmid-free strains, CM624 (by definition pntABWT, gshWT, GBWT) and CM1276 (pntABEVO, gshAEVO, 
GBEVO) served as the two starting points to construct, in a stepwise fashion, the 14 strains with one, two, 
or three evolved alleles. Allelic exchange plasmids containing the ancestral allele of pntAB or gshA in 
pCM433 (23) were made as follows. The 607-bp fragment containing pntAWT from CM501 was PCR 
amplified by primers HCAMp29 (5′-TCTCGAGTTCTGGATCTTGCCCAGTTC-3′) and HCAMp30 (5′- 
TGAGCTCCCACGAGCAGACCTATC-3′). The resulting PCR product was digested by XhoI and SacI, 
and then ligated into the XhoI-SacI digested pCM433 backbone to generate pHC35. The 584-bp fragment 
containing gshWT from CM501 was PCR amplified by primers pHCAMp31 (5′- 
CGAGCTCGCCCTCATATGGAAC-3′) and pHCAMp32 (5′-ACTCGAGATCGTCTCCACCCTGATC-
3′). The resulting PCR product was digested by SacI and XhoI, and then ligated into the SacI-XhoI 
digested pCM433 backbone to generate pHC37. Constructs to introduce pntABEVO and gshAEVO were 
generated in the manner identical to that for generating pHC36 and pHC38 (15). Subsequent to generating 
the desired chromosomal genotype, strains bearing either fghAWT or fghAEVO could be generated by simply 



reintroducing either the original pCM410 plasmid or the evolved pCM410.1145 plasmid that had been 
conjugated into E. coli from CM1145. All intermediate and final strains from this process and the order of 
introductions to generate the full set of allele combinations are indicated below in Table S1. 

 
Media for Growth Experiments 

One liter of growth media consisted of 1 ml of the trace metal solution, 100 ml of phosphate 
buffer (25.3 g of K2HPO4 and 22.5 g of NaH2PO4 in 1 liter of deionized water), 100 ml of sulfate solution 
(5 g of (NH4)2SO4 and 0.98 g of MgSO4 in 1 liter of deionized water), 799 ml of deionized water, and the 
desired carbon source (27). The trace metal solution used during the evolution experiments (per 100 ml, 
maintained at pH 5 after each addition) consisted of 12.738 g of EDTA disodium salt dihydrate, 4.4 g of 
ZnSO4·7H2O, 1.466 g of CaCl2·2H2O, 1.012 g of MnCl2·4H2O, 0.22 g of (NH4)6Mo7O24·4H2O, 0.314 g of 
CuSO4·5H2O, 0.322 g of CoCl2·6H2O, and 0.998 g of FeSO4·7H2O in 1 liter of deionized water (27). 
Effective concentrations of trace metals in this solution, however, were subsequently shown to be 
unstable due to the light-dependent degradation of the metal chelator EDTA (15). To ensure the 
consistency of testing conditions, a robust formulation with slight modifications was hence developed 
(15) and applied for all phenotypic assays described here. This modified trace metal mix (per 100 ml) 
consisted of 10 ml of 179.5 mM FeSO4 (5x relative to above recipe), 80 ml of premixed metal mix 
(12.738 g of EDTA disodium salt dihydrate, 4.4 g of ZnSO4·7H2O, 1.466 g of CaCl2·2H2O, 1.012 g of 
MnCl2·4H2O, 0.22 g of (NH4)6Mo7O24·4H2O, 0.314 g of CuSO4·5H2O, and 0.322 g of CoCl2·6H2O in 1 
liter of deionized water, pH 5), and 10 ml of deionized water. 

 
Experimental Evolution Regime 

The evolution experiment consisted of eight replicate populations, designed as F1 through F8. 
The odd- and even-numbered populations were founded by the pink-colored and white-colored EM 
strains CM701 and CM702, respectively. The alternation of the color marker was designed to aid in 
detecting contamination or mislabeling flasks. All populations were grown on 15 mM methanol in 9.6 ml 
of growth media contained in 50 ml Erlenmeyer flasks and incubated in a 30 °C shaking incubator at 225 
rpm. An inoculum of 1/64 the total volume (150 μl) was transferred into 9.45 ml fresh medium, thereby 
permitting an average of six generations during each growth cycle. Due to the slow growth of the EM 
strains, during the first 300 generations of evolution these transfers occurred every four days. Once all 
populations could sustain a two day cycle (generation 300), the transfer cycle was switched to every two 
days thereafter to maintain selection primarily upon exponential phase. Populations were sampled 
periodically and preserved with 8% DMSO at –80 °C for later analysis. Three random isolates were 
obtained from each population at generations 60, 120, 300, and 600 to estimate the adaptive trajectories of 
populations (Table S2). Among the three random isolates, one was chosen randomly to characterize 
changes in growth rate, yield, and cell size. 

 
Fitness Assays 

Prior to competition experiments, all strains were acclimated in growth medium supplemented 
with carbon sources used in the ensuing assays. Competition experiments were performed by following a 
previously described procedure (27) with the following adjustment due to the slow growth of the EM 
strain on methanol. The duration for competition experiments in growth media supplemented with 
methanol and succinate was four days and two days, respectively. After one round of acclimation, a given 
test strain and a fluorescent reference strain were mixed by a 1:1 volume ratio, diluted 1:64 into 9.6 ml of 
fresh media which were incubated under the conditions described above. The frequencies of 
nonfluorescent cells in mixed populations were measured by passing population samples before (F0) and 
after (F1) competition growth through a BD LSR II flow cytometer (BD Biosciences, San Jose, CA, USA) 
for at least 5·104 cell counts per sample. Fitness values (W) relative to the reference strain were calculated 
by a previously described equation assuming an average of 64-fold size expansion of mixed populations 
during competitive growth (27): 
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Because the color marker was selectively neutral across genetic backgrounds, phenotypes of the WT 
strain and the EM strain were assayed based on their white-colored isogenic variants. The white-colored 
fluorescent EM strains CM1232 was used regularly as the reference strain to measure fitness of evolved 
isolates from the F populations, the 16 mutational combination strains, and the WT strain. To measure 
fitness of the EM strain, evolved isolates from F populations, and the WT strain during growth on 
succinate, growth media for the acclimation phase were supplemented with 3.5 mM disodium succinate 
plus kanamycin (25 μg/ml) to prevent spontaneous loss of pCM410 in the absence of selection. 

Competition experiments then proceeded in growth media supplemented with just 3.5 mM 
disodium succinate. Because the WT strain was sensitive to kanamycin, the white isogenic variant, 
CM611 (27), bearing the katA::kan marker was used instead, as it has been shown that this strain is 
neutral in the WT genetic background during growth on either methanol or succinate (27). 
 
Selection of CM1145 as the EVO strain for further analysis 

Based upon fitness assays for three isolates from each population at generation 600, we selected 
one of the fittest of these (CM1145) to pursue further here, as well as in earlier work (15). Other strains 
isolated subsequently from the F4 population at 600 generations (CM1735, CM1736, CM1737) were not 
statistically distinguishable from CM1145 in terms of fitness (Table S2). 

 
Enzyme Assays 

The activities of FlhA (28) and FghA (29) were assayed in three biological replicates using cells 
harvested from mid-exponential phase cultures. Cells were collected through centrifugation at 10,000 × g 
for 10 min, frozen at –80 °C, and used for enzyme assays within a week. Before physical disruption, cell 
material was suspended in 50 mM Tris-HCl buffer (pH 7.5). Cell extracts were prepared using a French 
pressure cell at 108 Pa (two times, 4 °C) and then centrifuged at 13,000 × g, 4 °C for 15 min to remove 
cell debris. The total protein concentration in the extracts was assayed using the Bradford method (30). 
Kinetic analyses of FlhA and FghA activities over 10 min at 30 °C were monitored in 200 μl reaction 
mixtures using a SpectraMax M5 Plate Reader (Molecular Devices, Sunnyvale, CA, USA). 

 
Determination of Cell Length and Morphology 

Cells from mid-exponential phase cultures were collected by centrifugation at 10,000 × g for 10 
min, suspended in 50 mM Tris-HCl buffer (pH 7.5) plus 8% DMSO (v/v) as cryo-protectant, and then 
frozen at –80 °C until further use. Analysis of cells morphology on a LSR II flow cytometer (BD 
Biosciences) was performed following a previously described method (31). Before analysis, 
Fluoresbrite® YO Carboxylate Microspheres (Polysciences, Warrington, PA, USA) of 0.75, 1, 3, and 6 
μm diameter were used to calibrate the instrument. The 1 μm fluorescent beads were added into all 
samples which served as the standard for data normalization. Forward scatter (FSC) measures were 
collected at low flow rates with an average of 250 events per second throughout data collection. Data 
were collected from least 8000 cells per sample and analyzed using FSCDiva Software 6.0 (BD 
Biosciences). Relative measures of cell sizes were calculated by dividing the FSC geometric means of 
cells by those of the 1 μm fluorescent bead (32). For microscopy, cells were suspended in 50 mM Tris-
HCl buffer (pH 7.5) and mounted on slides coated with either poly-lysine or 1% agarose. Microscopy was 
performed on a Zeiss Axioskope 40 microscope equipped with an AxioCam MRm camera (Carl Zeiss, 
Thornwood, NY, USA). Images were processed with the AxioVision 4.5 software (Carl Zeiss). For each 
sample, the cell morphology of 560 cells was scored using ImageJ (33). The cell length was measured by 
the longitudinal axis across the cell body. A cell was considered as elongated when its cell length exceeds 
6 μm (twice the normal cell length). A cell was defined as curved when the included angle of the 
longitudinal axis was less than 135°. A cell was scored as branched when protrusions occurred outside 



two cell poles. For branched cells, their cell length was measured by the longitudinal axis of the mother 
cell. 

 
Strain Sequencing and Mutation Detection 

Genomic DNA from strain CM1145 as well as the ancestral strain CM501 was sequenced via the 
Genome Analyzer (Illumina, San Diego, CA, USA) sequencing platform to generate 36 bp single end 
reads. For strain CM1145, a total of 21,893,037 reads were generated, which after quality filtering (i.e., 
does or does not align) gave approximately ~68X coverage of the chromosome (coverage levels of the 
plasmids were equivalent to this after accounting for the fact that some are carried in multiple copies by 
the cell or suffered large deletions, thus skewing average coverage statistics). A description of the most 
profitable methods used to find mutations is given below, however, other methods (e.g., other SNP 
calling software) and parameter settings were used but are not reported here as they either failed to 
identify as many mutations or merely performed as well. 

 
SNP Detection 

In order to detect single nucleotide changes in CM1145, the Illumina reads were aligned to the 
reference M. extorquens AM1 genome (Accession: CP001510.1) (34) using the CLC genomics 
workbench version 4.0.2 (Cambridge, MA, USA). Relevant parameters were as follows: Mismatch 
cost=2, Limit=10, Global alignment=True. Following the read mapping, a list of putative SNPs was 
created using the CLC SNP detection algorithm with the following parameters: Window length=11, 
Maximum gaps and mismatches=4, Minimum coverage=3, Minimum variant frequency=35%. Every SNP 
on this list was then investigated to ensure that the SNP was not called due to an alignment failure, and 
that the mutation was not present in the ancestral CM702 strain, allowing us to identify 2 SNPs that arose 
during the evolution experiment (see Supporting Text below). 

 
Finding large insertions, deletions and rearrangements with de novo assemblies 

In order to search for other mutations affecting the genome, we generated de novo assemblies of 
the CM1145 genome using the CLC genomics workbench version 4.0.2 (Relevant parameters as follows: 
 Mismatch cost=2, Limit=10, Global Alignment=True, Non-specific matches=Randomly assigned, 
Conflict Resolution=Vote). We then used megablast to verify that every contig had a perfect contiguous 
match to the reference genome. For each contig, if the single best contiguous megablast match to the 
genome left 20 or more bases unaccounted for at either end of the match, we further investigated the 
genomic location to determine if a true mutation was present, such as an insertion sequence (IS), or if the 
mismatch was due to some other cause (e.g., misassembly, previously known genetic manipulation, etc.). 

 
Mutation detection by k-mer counting 

The previously described mutation finding techniques are all specifically designed to detect 
particular mutational types (SNPs, INDELS, or novel DNA), and under certain conditions can fail to 
detect newly arising mutations. For example, the repetitive sequences in IS elements means that they are 
often difficult to assemble into unique contigs, making finding ISs from de novo assemblies difficult. 
Similarly, SNP detection against a reference genome is very sensitive to the ability of an aligner to 
correctly position a mismatched basepair, and SNP calling software can fail to identify SNPs depending 
on the nature of the alignment or parameter settings. 

Because of the above issues, we also employed an alignment-independent k-mer counting 
strategy to find any additional mutations that may have occurred in the CM1145 genome. Briefly, this 
method counts the number of times each 20 basepair long k-mer in the reference genome occurs in the 36 
bp Illumina reads generated for the sequenced strain, and generates a list of all genomic locations whose 
kmers are not present in the sequence data. A word size of 20 basepairs was chosen because if genomic 
sequences were random strings of basepairs, the odds of a specific 20 k-mer occurring multiple times in 
the genome is vanishingly small, and as a result 95.4% of the genome (that genomic sequence not 
composed of repetitive sequence elements) can be uniquely identified with k-mers of this size. 



Additionally, because only 0.11% of all words within a Hamming distance of 1 from any unique 
k-mer in the genome match another k-mer already present in the genome, sequencing errors are unlikely 
to lead to a false positive result that would prevent the detection of a genomic mutation. This protocol is 
thus able to robustly detect any mutational event in the large majority of positions in the genome. 

For every block of positions in the genome whose k-mers were not represented in the sequencing 
data, we investigated the genomic region in the alignment of the reads to the reference as well as in the de 
novo assemblies. In all cases we could attribute the lack of k-mers to either a mutational event or to low 
coverage and/or erroneous sequence that could be safely ignored once reads were considered jointly. In 
addition to identifying all of the mutations found with the early methods, this protocol detected two large 
genomic deletions. First, no unique coverage was found for the smallest (~25 kb) plasmid in the reference 
genome (p3META1, CP001514.1) indicating that it had been completely lost in the evolved lineage. 
Second, the coverage of the megaplasmid META2 indicated that a large portion (~617 kb) of the genome 
had been deleted (fig. S7). Unique coverage for this element began from one copy of ISMex5 located at 
basepairs 211,853-213,135 to another copy at basepairs 855,329-856,611. Given this coverage pattern, as 
well as PCR verification, we infer a recombination event between these two elements leading to loss of 
the region without the genes encoding for replication. 

 
Details of the benefit-cost model 

It is known that the cost of protein production slows down the growth rate in E. coli (17, 35-37). 
We observed a similar growth burden induced by expression of the foreign GSH-dependent formaldehyde 
oxidation pathway in Methylobacterium (either WT or EM). This growth burden is captured in our model 
with a negative fitness component (cost, c0), that is subtracted from the unburdened fitness (or benefit, 
b0). In our study, the fitness of a genotype refers to the ratio of the amortized growth rates for that strain 
to its competitor over the growth conditions specified. Consequently, the fitness of the ancestor (W0), 
where no beneficial allele is introduced, can be written as: 

W0=b0-c0 =1 ..………………………………………..……………(eq1) 
The above equation provides an inherent constraint between b0 and c0, such that, for example, if 

c0 is known, b0 can be immediately computed as b0 = c0+1. 
As described in the main text, the justification for proposing to subtract the cost is the hypothesis 

that the sum total of costs for expressing a protein at a particular level would be approximately fixed, and 
thus independent from mutations that simply alter the rate of converting substrate into biomass. This 
formulation is identical to that used to explore evolution toward optimal enzyme expression of β–
galactosidase in E. coli (17). An alternative hypothesis that we considered was to treat fitness as the ratio 
of benefits to costs. This would imply that the same level of protein expression would impose a more (or 
less) cost when the strain grows faster (or slower) due to changes independent of the cost itself. This 
would result in a proportional ‘tax’ rather than a fixed ‘cost’. Recent work has shown that, although the 
cost of a given amount of protein is not strictly constant, the proposition of simply imposing a 
proportional tax is refuted by the data (38). A proportional tax model additionally makes the prediction 
that there should be no epistasis observed for any mutational combinations, which contradicts the data we 
present (Figs. 1, 3, S9).   

The fitness of a single mutant, where a single allele i is introduced into the ancestral background, 
is defined by the mutational effect of allele i on the benefit b0 and on the cost c0 with multiplicative 
factors λi and θi respectively. Hence fitness of this mutant (Wi) can be written as: 

Wi = λib0-θic0 ……………………………….……………………(eq2) 
This provides allele i with two non-mutually exclusive mechanisms to improve fitness: (i) 

increasing the metabolic benefit (λi >1) or (ii) reducing the protein cost (θi <1). Conversely there are two 
ways to decrease fitness: (i) decreasing the benefit (λi <1) or (ii) increasing the cost (θi >1). As fitness is 
thus the sum of these two effects, a beneficial mutation will be any combination of values that satisfy the 
following: 

Wi = λib0-θic0>1 …………………………….…………...………(eq3) 



When considering double mutants, we propose that every mutation affects each component of the 
fitness (b0 and c0) independently of previous mutations, giving rise to a multiplicative accumulation of 
effects for each term, as follows: 

Wij = λiλjb0-θiθjc0 ………………..………………………….……(eq4) 
A generalized version of the above equation is then hypothesized to describe the fitness of any 

multiallele mutant: 
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Consequently, our formulation of fitness provides a putative way of predicting the fitness of any 
multiallele combination from the knowledge of c0 (with b0=1+c0 automatically determined) and of the 
multiplicative factor λi and θi for each single allele i. 

 
Estimating parameters of the benefit-cost model 

The parameters of our model were determined through a series of experimental observations. 
Since expression cannot be eliminated entirely in EM to cleanly estimate c0 in that genotype, we use the 
fitness advantage of removing expression in WT to provide an estimate for c0 = 0.141, and thus b0 = c0 + 
W0 = 0.141 + 1 = 1.141. 

Next, we utilize the experimental data to estimate the parameters θ, describing the change in cost 
induced by each individual mutation. Given the link between fitness change and cell morphology 
abnormality discussed in the main text (Fig. 1), we assume that the cost change factor θi induced by 
mutation i is related to the percentage of the abnormal cells found in that population. The intuition here is 
that although the burden felt from expressing the foreign pathway can be considered on a continuous 
scale, it appears to manifest as discrete phenotypes, suggesting that there may be a threshold behavior for 
this morphological phenotype (e.g., cells were either branched, or not branched). This may be an 
analogous scenario to induction of the lactose operon, where a continuous change in inducer 
concentration shifts a genetically identical population from being all off, to some on and some off, to all 
on (rather than the alternative of a graded response with a unimodal distribution at moderate inducer 
concentrations) (36). This proxy is of course very much an approximate hypothesis of what may be 
occurring. Reassuringly, cell length - another possible proxy - tracks well with this proportion. 
Furthermore, changes in relative cell length (as estimated by flow cytometry) provide two further 
confirmations of our proposed model. First, combinations of "cost-reducer" mutations lead to continuing 
decreases in cell length (fig. S2H). Second, all populations show the trend of reduction in cell size in the 
first 300 generations of the experiment (fig. S2D). It should be noted, however, that the visual 
manifestation of this cost appears to be less in the WT strain that does not grow as poorly as the EM 
strain. 

Given this, we estimate θi for a beneficial allele i that is proportional to the relative proportion of 
abnormal cells compared to the EM ancestor, i.e.: 

θi = pi / p0 …………………….........………………………(eq6)  
Here p0 and pi are the proportion of the abnormal cells in the population of ancestor and single 

mutant strain i, respectively. By rearranging (eq2), λi can be written as the follows: 
λi = (Wi + θic0) / b0 …………….........………………………(eq7) 
Using our estimated parameters c0 and θi, we can then calculate an estimated λi for each single 

mutant strain i (table S3). Once these parameters were determined from single allele data, we can apply 
(eq5) to predict all the fitness of multi-allele strains (fig. S9B). Compared with the standard “no epistasis” 
model that lacks a cost component (fig. S9A), our benefit-cost model obtains a much better agreement 
with the data. In addition, the residual plot for the standard model and the benefit-cost model indicates 
that the benefit-cost model (residuals are randomly distributed) is an appropriate estimate for the multi-
allele fitness while the standard model is not since a clear trend of residuals exist (fig. S10). 
 
Supporting Text 



Comparisons of alternative formulations for genetic interactions 
 In this work, we quantify epistatic interactions relative to a baseline that is the most commonly 
used null model in evolutionary genetics (1, 2). This null model assumes that mutations that alter a given 
phenotype do so to the same proportional extent on any genetic background. There is some 
understandable confusion about naming conventions, as this model is sometimes called ‘additive’ due to 
its constant effect on log-transformed phenotype, but has mostly been labeled as ‘multiplicative’. A 
formulation that gives strict additivity is a simple linear model which assumes each mutation adds a 
constant change to a phenotype, a definition of epistasis first proposed by Fisher (39).  

Simple linear models are commonly used for inferring the effects of different genetic markers on 
phenotypes in quantitative genetic and genome association studies and are used in many fields for 
statistical inference partly due to their tractability (1, 40). In the context of the present study, the primary 
phenotype examined is fitness, which is largely determined by the growth rate of the bacterium. Our 
rationale for employing a multiplicative model is two-fold: First, it is hard to imagine a biological 
mechanism by which a genetic perturbation could confer a constant absolute effect on the growth rate that 
is independent of the growth rate of the unperturbed organism. Second, in contrast to an additive model, 
the multiplicative model can be sensibly interpreted in the context of our work.  

We offer two examples to illuminate why a multiplicative model, in the absence of any other 
information about the process in question, is the expectation for independent modifiers of a phenotype. 
First, consider a genotype of a plant that produces a given number of seedlings. The number of seedlings 
could be doubled through two different mutations, one that doubles the number of seedlings, the other 
that doubles the probability that they germinate. Given the null expectation that these two mutations act 
independently on this trait, there would be a four-fold increase in seedlings for a multiplicative model. In 
contrast, an additive model would only suggest a three-fold increase. Second, consider a metabolic 
example. The activity of an enzyme in a cell could be doubled by either doubling the amount of that 
enzyme or the catalytic activity per molecule (i.e., kcat). Again, under the assumption of independence 
these mutations would be expected to quadruple activity. 
  Our data shown in Fig. 1 show a clear pattern of diminishing proportional return for most 
mutations upon fitter backgrounds. It can be noted that the absolute increases in fitness conferred by each 
allele (W1,background – W0,background, where 1 and 0 indicate the presence of the evolved and wildtype alleles, 
respectively) are, in fact, reasonably close to being a constant across the eight different backgrounds on 
which they were tested. Paradoxically, this implies that the observed diminishing returns trend may 
comply with the null expectation relative to an additive model. In contrast, relative to the physiologically 
interpretable multiplicative model the data represent a departure from the null expectation of a constant 
proportional effect. 
 
Mutations that arose during the evolution experiment in the EVO strain 

Only 9 of the mutations that distinguish the EVO strain (CM1145) from the reference genome 
available in GenBank (34) occurred during evolution to methanol. There were 15 additional differences 
identified that were preexisting in the EM ancestor of the F4 population (CM702). Three of these were 
simply the known manipulations to generate CM702: ΔmptG, crtI502, pCM410 (described above). Eleven 
further differences were already present in our WT isolate (i.e., CM501). These included eight small 
indels (in the main chromosome META1: +C, 482895; ΔG, 2329711; ΔC, 3037770; ΔG, 3159071; 
ΔCGTGC, 4000779; +CCGTG, 4001535; on the megaplasmid META2: +C, 580985; ΔG, 770864) and 
three SNPs (on META1: T→G, 2777457; C→T, 2803789; T→C, 2803840). These may represent either 
sequencing errors in the reference (or less likely, both sets of Illumina data here) or actual differences 
between CM501 and the isolate used to generate the gDNA for the reference genome. A final mutation 
was identified in EVO that was missing in WT, yet was already present in the EM ancestor. This change, 
a 12 bp deletion (ΔGCCGCCGCGGAC, 3844018 of META1) in META1_3695, shortens this 
hypothetical protein that is a putative “lytic transglycosylase, catalytic” by 4 amino acids (removes Ala-
Ala-Asp-Ala). This mutation was confirmed via PCR and sequencing, and thus apparently arose at some 



point during the construction of the EM strain (CM501→S234-13→CM502→CM624→CM702; see 
above and Table S2). 

The following 9 mutational events were identified in EVO but in neither the EM ancestor nor 
WT, and thus emerged during the course of the 600 generations of adaptation to methanol. For the 
purposes of this paper, mutations A through C correspond to loci 1 through 3, while mutations D through 
I are collectively treated as the fourth locus, “GB” (genetic background). 

 
Mutation A - 11 bp deletion in the introduced plasmid (fghA1145, or here fghAEVO) 

This is a deletion of the sequence "AGGGAAGAACC" that occurs at position 3,790 in the 
introduced plasmid. This deletion occurs between the flha and fghA genes and is described in the main 
text. 
Mutation B - SNP in the chromosome (pntAB1145, or here pntABEVO) 

This mutation is a C->T substitution that occurs at position 3,087,664 in the chromosome. This 
mutation occurs 48 bp upstream of the pyridine nucleotide transhydrogenase gene (pntAB). 
Mutation C - 2 bp deletion in the chromosome (gshA1145, or here gshAEVO) 

A 2 bp deletion occurred at position 701,477 in the promoter region (127 bp upstream of the start 
codon) of the most rate-limiting enzyme of GSH biosynthesis, γ-glutamylcysteine synthetase (gshA). 
Mutation D - IS insertion into the chromosome 
An insertion sequence, ISMex4 (34), inserted at approximately position 1,122,226 in the META1 
chromosome. This insertion results in the ~50X up-regulation of a cobalt transport cassette (allele = 
icuAB1145) and has been extensively characterized in previous work (15). Although beneficial in metal-
poor medium, this locus was not treated separately here due to being neutral in metal replete medium 
(15). 
Mutation E - SNP in the megaplasmid 

This mutation is a C->T substitution that occurs at position 372,544 in the megaplasmid. The 
mutation is a synonymous substitution in the coding sequence annotated as META2_0422. This protein 
has no homology to any previously reported protein. 
Mutation F - IS insertion into the chromosome 

The insertion sequence ISMex2 (34) inserted itself at approximately position 2,860,154. This 
mutation occurs in between the two proteins ccmC and ccmD. These proteins in E. coli are part of the 
type 1 cytochrome c biogenesis complex and are involved in transporting heme from the cytoplasm to the 
periplasm, where it can then be incoporated into cytochrome c apoproteins (41). 
Mutation G: Small insertion in chromosome 

This is an insertion of 6 bp into the conserved hypothetical protein annotated as META1_4902. 
The mutation occurs at position 5,022,190. This insertion keeps the protein in frame, and introduces 2 
additional amino acids which are a copy of the preceding two in the protein. 
Mutation H – Large deletion in the megaplasmid 

A presumed recombination event between homologous transposases annotated as part of the 
ISMex5 family (34) resulted in a large deletion on the megaplasmid (fig. S7). The recombination event 
occurred between the genes that occurred in position 211,853-213,135 and the one from 855,329-856,611. 
Mutation I - Loss of plasmid p3META 

The smallest plasmid present in the reference genome was lost during the evolution experiment. 
The plasmid is 25 kb in size and contains 35 genes (~0.5% of the total genes in the reference genome). 

 
Connection of the products of fghA, pntAB and gshA to the engineered C1 metabolism in the EM 
strain 

The three identified mutations which we have considered as individual loci have direct 
connections to the modified C1 metabolism in the EM strain following inactivation of the 
tetrahydromethanopterin dependent pathway for the GSH-dependent one. The first is obvious: fghA (and 
flhA upstream of it) encode the second of the two enzymes of the introduced pathway (formyl-GSH 
hydrolase and hydroxymethyl-GSH dehydrogenase) (28, 29). The fghAEVO allele reduces expression of 



both genes in the introduced pathway (see main text). The second mutation is upstream of pntAB, which 
encodes transhydrogenase. This enzyme inter-converts NADH + NADP+ + H+

p → NAD+ +NADPH + H+
c 

(where H+
p and H+

c represent periplasmic and cytoplasmic protons, respectively). Whereas the original 
H4MPT pathway could couple to either NADH or NADPH, FlhA of the GSH pathway only acts to 
generate NADH. This removes the only known direct route for NADPH synthesis for assimilation 
reactions, making transhydrogenase critical for growth. This mutation therefore likely helps increase the 
cell’s capacity to generate NADPH. The third mutation is upstream of gshA, encoding γ-glutamylcysteine 
synthetase. The new pathway requires GSH as the C1-carrier, yet GSH is involved in myriad cellular 
functions involving redox balance and removal of toxic compounds. As such, if this mutation increases 
the cellular pool of GSH it may alleviate the limitation for this compound in general cellular functions. 
Furthermore, it is notable that the reaction of formaldehyde with GSH is non-enzymatic in EM. This is in 
contrast to Paracoccus denitrificans, where the pathway was cloned from. It was found that P. 
denitrificans makes a novel enzyme (GFA, a GSH dependent formaldehyde-activating enzyme) (42) that 
catalyzes this reaction. Thus, another key benefit that could come from elevated GSH concentrations 
would be an increased rate of reaction with formaldehyde. 

 
Sensitivity analyses of the benefit-cost model 

In fig. S9 we test how well our model can predict fitness of multi-allele strains by calculating the 
sum of square error (Σ) for the fitness between data and our model. 
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As we can search for an optimal c0 best predicts the fitness of multi-allele strains (fig. S9C-D), one might 
ask whether the remarkably good prediction of experimentally derived fitness can be achieved by chance. 
Could our model always find a c0 that will give comparable predictions for random datasets? To address 
this issue, we test the null hypothesis that our model can always perform as well as it predicts the fitness 
for real data. We calculate the p-value for the model to obtain a better sum of square error (less than 
0.0134, the one obtained with the measured c0=0.141) in a permuted data generated by shuffling double 
and triple mutants 1,000,000 times (out of 10! sample space). The p-value we obtain from this 
permutation test is 0.00005, indicating that it is highly unlikely for the model to achieve such a good 
prediction by chance.  

Alternatively, randomly generating 1,000,000 single peaked fitness landscapes using a rejection 
sampling scheme that simulated fitnesses for the double and triple mutants confirms that the accuracy for 
prediction cannot be achieved in these random trajectories (none of the random trajectories achieve a 
better sum of square error). Fitness landscapes were proposed by drawing the value of the double and 
triple mutants from uniform distributions ranging from the value of the highest observed single mutant 
fitness to the highest observed fitness of a genotype with one additional mutation relative to the genotype 
being simulated. Only simulations resulting in single peaked landscapes were considered. 

Using a slightly different approach, it is interesting to ask how the comparison between data and 
model would change for different values of c0. In addition to allowing us to perform a sensitivity analysis 
relative to c0, this calculation will show us whether there is a c0 that gives optimal agreement between 
data and model (and how close this optimal c0 is to the experimentally estimated one), and how the model 
behaves as it approaches the c0=0 condition, which corresponds to a standard definition of non-
epistatically interacting mutations. Hence, treating c0 as a free parameter, we can search for the optimal c0 
that minimize the sum of square error Σ. The sensitivity analysis indicates two messages for the model: 

(1) Measured c0 is quite close to the optimal c0 
A sensitivity analysis on c0 shows that the choice of c0=0.141 approximated from the experiment provides 
a similar quality of fitness prediction, compared with the optimal c0=0.119 (fig. S9C). In addition, the 
results indicate that the model is not particularly sensitive to the choice of c0 as a wide range of c0 produce 
comparable sum of square error between the model and data. 

(2) Both benefit and cost components are required for the model 



As expected from the sensitivity analysis, when c0 approaches zero, data and model disagree quite 
significantly relative to the optimum, indicating the term c0 is necessary to capture the antagonism at the 
fitness level, under the multiplicative rule of how alleles combine. On the other hand, a cost-only 
formulation (b0 = 0, indicating the only way to improve fitness is by cutting the cost) is not tenable 
because pntABEVO barely reduces costs (θ ≅ 1), such that it would be predicted to be a neutral mutation. 
Therefore, both the cost and benefit term c0 and b0 are necessary as the minimal model to recapitulate the 
fitness of multi-allele strains and the antagonistic pattern we observe. 

 



 

 
 
Figure S1. C1 network in EM ancestor. Methanol (CH3OH) is first oxidized to formaldehyde (CH2O) via 
methanol dehydrogenase (MDH). CH2O can then react spontaneously with GSH (biosynthesis of which 
depends upon the gene product of gshA, γ-glutamylcysteine synthetase; indicated in green) to form 
hydroxymethyl-GSH (GS-CH2OH). This is oxidized to formyl-GSH (GSH-CHO) by the first introduced 
gene product, NAD-dependent GS-CH2OH dehydrogenase (encoded by flhA), creating NADH in the 
process. The formyl group is then hydrolyzed to formate (HCOOH) by the second introduced enzyme, 
GS-CHO hydrolase (encoded by fghA; both are indicated here in yellow). HCOOH is subsequently 
oxidized to CO2 via one of several formate dehydrogenases (FDHs) or is assimilated into biomass via a 
series of tetrahydrofolate-dependent reactions and the serine cycle. The reaction inter-converting NADH 
(and NADP+) to NADPH (and NAD+; at the cost of one H+ translocated across the cytoplasmic 
membrane) is catalyzed by the membrane-bound transhydrogenase (encoded by pntAB) indicated in blue. 
The new GSH-dependent pathway only generates NADH directly, whereas the endogenous 
tetrahydromethanopterin (H4MPT)-dependent pathway that was disabled (shown in grey and crossed out) 
in the EM strain can generate either NADH or NADPH. 
 



 
 

Figure S2. – Fitness vs. rate, yield or cell size. In all panels: WT, red circle; EM, orange triangle; 
regression lines, grey. Panels A, B, C: isolates from generation 60 (blue crosses), 120 (brown diamonds), 
300 (green dashes), 600 (purple squares). Panels D, E: isolates from F1 through F8 (●, ○, , , ■, □, , 

); grand mean of relative cell size, orange line. Panels F, G, H: strains with evolved allele combinations, 
black dots. 



 
 
Figure S3. Dynamics of adaptation of the EM strain evolved in medium containing methanol. Fitness 
increases through time for replicate populations F1 through F8 (●, ○, , , ■, □, , ). The orange 
triangle and line indicate the EM strain and the grand population mean, respectively. 



 
 
Figure S4. Fitness on methanol vs. succinate. WT, red circle; EM, orange triangle; three evolved isolates 
from each of F1 through F8 (●, ○, , , ■, □, , ) after 600 generations in methanol. 



 
 
Figure S5. Three focal mutations related to C1 metabolism. Details of the genetic changes and 
relationship to methylotrophy in the EM strain are discussed above in Supplemental Text. 



 
 
Figure S6. The physical map of the pCM410 plasmid (GenBank accession no. FJ389188). PmxaF, strong, 
endogenous methanol dehydrogenase promoter; flhA and fghA, enzymes of the introduced GSH 
dependent formaldehyde oxidation pathway; trfA, plasmid replication initiator gene; oriV, IncP origin of 
replication; oriT, origin of transfer; colE1, high-copy origin of replication in E. coli; kan, kanamycin 
resistance marker. 



Figure S7. The mean frequency of k-mers that uniquely occur only in the genome along the length of the 
META2 megaplasmid (binned in 2000 bp windows). Unique coverage appears for the middle of the 
chromosome, but is absent on either side at the location of a copy of ISMex5 (34) as a result of a deletion. 
Given that META2 is circular, this indicates that a ~617 kb region was deleted, leaving only the 
undeleted sections of the megaplasmid. 
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Figure S8. Distribution of cell lengths for WT (white) and EM (black). 



 
 
Figure S9. Goodness of fit and sensitivity analysis of the model. Error bar represents the standard error of 
three replicates. (A) Plot of fitness values for the 11 mutation combinations versus those predicted from 
the standard model (using c0 = 0, the benefit-cost model will be equivalent to the standard model 
correspond to standard model Wi,background = WiWbackground). The straight line represents the perfect 
prediction. (B) Comparison of predictions and experimental data, as done in (A), using the benefit-cost 
model (Wmutant = Πλib0 - Πθic0) with experimentally determined c0 = 0.141. (C) Sensitivity analysis for the 
benefit-cost model at various choices of c0 indicates that experimentally measured c0 = 0.141 (B) provides 
a similar quality of fitness prediction to the optimal c0 = 0.119 (D) with sum of square error Σ=0.0134 and 
0.0091, respectively. (D) The best fit of the benefit-cost model with optimal c0 = 0.119. 



 
 
Figure S10. Residual plot for the standard model and the benefit-cost model. (A) The standard model is 
not a good estimate for fitness since the residuals (measured fitness – predicted fitness) show a clear 
pattern that is not randomly dispersed around zero. (B) (C) The benefit-cost model not only shows 
smaller residuals, but also do not show any clear trends, indicating the prediction made by the benefit-cost 
model is appropriate. 
 



Table S1. Fitness and cell size of evolved isolates 
 

Strain Population Generation Fitness *Relative cell size 
CM911 F1 60 1.252 ± 0.013  
CM912 F1 60 1.270 ± 0.013  
CM913 F1 60 1.279 ± 0.065 0.439 
CM914 F2 60 1.035 ± 0.017  
CM915 F2 60 1.169 ± 0.007  
CM916 F2 60 0.998 ± 0.016 0.501 
CM917 F3 60 1.105 ± 0.014  
CM918 F3 60 1.007 ± 0.020 0.501 
CM919 F3 60 1.111 ± 0.023  
CM920 F4 60 1.272 ± 0.012  
CM921 F4 60 1.220 ± 0.008 0.371 
CM922 F4 60 0.958 ± 0.039  
CM923 F5 60 1.101 ± 0.036  
CM924 F5 60 1.129 ± 0.032 0.488 
CM925 F5 60 1.009 ± 0.010  
CM926 F6 60 1.108 ± 0.035 0.484 
CM927 F6 60 1.076 ± 0.013  
CM928 F6 60 1.196 ± 0.031  
CM929 F7 60 1.133 ± 0.022  
CM930 F7 60 1.135 ± 0.041  
CM931 F7 60 1.011 ± 0.037 0.496 
CM932 F8 60 1.237 ± 0.025  
CM933 F8 60 1.232 ± 0.016 0.387 
CM934 F8 60 1.242 ± 0.010  
CM935 F1 120 1.420 ± 0.010 0.344 
CM936 F1 120 1.391 ± 0.045  
CM937 F1 120 1.374 ± 0.062  
CM938 F2 120 1.181 ± 0.009  
CM939 F2 120 1.216 ± 0.048  
CM940 F2 120 1.225 ± 0.032 0.417 
CM941 F3 120 1.312 ± 0.071  
CM942 F3 120 1.289 ± 0.010  
CM943 F3 120 1.394 ± 0.007 0.388 
CM944 F4 120 1.324 ± 0.040  
CM945 F4 120 1.357 ± 0.060  
CM946 F4 120 1.384 ± 0.014 0.352 
CM947 F5 120 1.212 ± 0.050  
CM948 F5 120 1.206 ± 0.010 0.440 
CM949 F5 120 1.244 ± 0.005  
CM950 F6 120 1.171 ± 0.031  
CM951 F6 120 0.980 ± 0.042 0.462 



CM952 F6 120 1.229 ± 0.033  
CM953 F7 120 1.252 ± 0.065  
CM954 F7 120 1.214 ± 0.011 0.397 
CM955 F7 120 1.246 ± 0.006  
CM956 F8 120 1.449 ± 0.061 0.368 
CM957 F8 120 1.454 ± 0.008  
CM958 F8 120 1.268 ± 0.006  
CM1145 F4 600 1.935 ± 0.062 0.426 
CM1606 F1 300 1.604 ± 0.013 0.390 
CM1607 F1 300 1.487 ± 0.052  
CM1608 F1 300 1.615 ± 0.055  
CM1609 F2 300 1.413 ± 0.066  
CM1610 F2 300 1.577 ± 0.021  
CM1611 F2 300 1.454 ± 0.017 0.455 
CM1612 F3 300 1.254 ± 0.021  
CM1613 F3 300 1.300 ± 0.061 0.375 
CM1614 F3 300 1.294 ± 0.024  
CM1615 F4 300 1.641 ± 0.036 0.398 
CM1616 F4 300 1.596 ± 0.019  
CM1617 F4 300 1.527 ± 0.028  
CM1618 F5 300 1.626 ± 0.019  
CM1619 F5 300 1.480 ± 0.032  
CM1620 F5 300 1.607 ± 0.026 0.370 
CM1621 F6 300 1.481 ± 0.072  
CM1622 F6 300 1.491 ± 0.020 0.418 
CM1623 F6 300 1.484 ± 0.024  
CM1624 F7 300 1.537 ± 0.013  
CM1625 F7 300 1.583 ± 0.012 0.442 
CM1626 F7 300 1.075 ± 0.032  
CM1627 F8 300 1.471 ± 0.010  
CM1628 F8 300 1.549 ± 0.019 0.415 
CM1629 F8 300 1.545 ± 0.055  
CM1726 F1 600 1.921 ± 0.047 0.425 
CM1727 F1 600 1.805 ± 0.019  
CM1728 F1 600 1.718 ± 0.025  
CM1729 F2 600 1.373 ± 0.010  
CM1730 F2 600 1.459 ± 0.020  
CM1731 F2 600 1.284 ± 0.056 0.444 
CM1732 F3 600 1.597 ± 0.021  
CM1733 F3 600 1.447 ± 0.018 0.458 
CM1734 F3 600 1.531 ± 0.022  
CM1735 F4 600 2.019 ± 0.091  
CM1736 F4 600 1.981 ± 0.087 0.401 
CM1737 F4 600 2.035 ± 0.063  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*Cell size of one isolate chosen randomly from each population at a given time point was measured using 
flow cytometry and reported as the forward scatter value. 
 

CM1738 F5 600 1.786 ± 0.070 0.429 
CM1739 F5 600 1.706 ± 0.062  
CM1740 F5 600 1.660 ± 0.036  
CM1741 F6 600 1.471 ± 0.024  
CM1742 F6 600 1.491 ± 0.033 0.480 
CM1743 F6 600 1.403 ± 0.022  
CM1744 F7 600 1.653 ± 0.047  
CM1745 F7 600 1.668 ± 0.017 0.447 
CM1746 F7 600 1.777 ± 0.024  
CM1747 F8 600 1.748 ± 0.038  
CM1748 F8 600 1.716 ± 0.022  
CM1749 F8 600 1.786 ± 0.021 0.427 



Table S2. Bacterial strains and plasmid constructs. 
 
Strain or plasmid Description Source or reference

Strains   

CM501 Pink-colored wild-type (23) 

CM502 White-colored wild-type (here ‘WT’), crtI502 (23) 

CM508 ΔmptG (23) 

CM611 crtI502, katA::kan (27)  

CM624 crtI502, ΔmptG This study 

CM701 ΔmptG, pCM410; pink engineered ancestor This study 

CM702 crtI502, ΔmptG, pCM410; white eng. ancestor (here ‘EM’) This study 

CM1145 

CM1175 

Evolved isolate (here ‘EVO’) from F4 population at gen. 600

katA::loxP-trrnB-PtacA-mCherry-tT7 

(15) 

(27) 

CM1176 crtI502, katA::loxP-trrnB-PtacA-mCherry-tT7 (27) 

CM1180 crtI502, katA::loxP-trrnB-PtacA-Venus-tT7 (27) 

CM1225 katA::loxP-trrnB-PtacA-mCherry-tT7, ΔmptG This study 

CM1226 crtI502, katA::loxP-trrnB-PtacA-mCherry-tT7, ΔmptG This study 

CM1231 katA::loxP-trrnB-PtacA-mCherry-tT7, ΔmptG, pCM410 This study 

CM1232 crtI502, katA::loxP-trrnB-PtacA-mCherry-tT7, ΔmptG, pCM410 This study 

CM1275 

CM1276 

CM1277 

CM1287 

CM1290 

CM1293 

CM1298 

CM1310 

CM1311 

CM1312 

CM1313 

CM1314 

CM1315 

CM1316 

CM1317 

CM624 with pCM410.1145; *strain “1000” (i.e., fghAEVO) 

CM1145 cured of pCM410.1145 

CM1276 with pCM410; strain “0111” 

CM1276 with pntABWT (using pHC35) 

CM624 with pntABEVO (using pHC36) 

CM1276 with gshAWT (using pHC37) 

CM624 with gshAEVO (using pHC38) 

CM1287 with pCM410; strain “0011” 

CM1287 with pCM410.1145; strain “1011” 

CM1290 with pCM410; strain “0100” 

CM1290 with pCM410.1145; strain “1100” 

CM1293 with pCM410; strain “0101” 

CM1293 with pCM410.1145; strain “1101” 

CM1298 with pCM410; strain “0010” 

CM1298 with pCM410.1145; strain “1010” 

(15) 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

(15) 

This study 

This study 

This study 

(15) 

This study 



CM1348 

CM1350 

CM1784 

CM1785 

CM1786 

CM1787 

S234-13 

CM1290 with gshAEVO (using pHC38) 

CM1287 with gshAWT (using pHC37) 

CM1348 with pCM410; strain “0110” 

CM1348 with pCM410.1145; strain “1110” 

CM1350 with pCM410; strain “0001” 

CM1350 with pCM410.1145; strain “1001” 

crtI::ISphoA/hah-Tc; transposon mutant used to make 

CM502 

This study 

This study 

This study 

This study 

This study 

This study 

(22) 

   

Plasmids   

pCM106 PmxaF-flhA-fghA; †Tcr (14) 

pCM157 

pCM160 

cre-expression vector; Tcr

PmxaF expression vector; ‡Kmr 

(25) 

(26) 

pCM253 cre-lox allelic exchange plasmid with a ΔmptG allele; Kmr  (14) 

§pCM410 

§pCM410.1145 

pCM433 

PmxaF-flhA-fghA; Kmr 

pCM410 derivative isolated from CM1145; fghAEVO allele 

sacB-based allelic exchange plasmid; Tcr 

This study 

This study 

(23) 

pHC35 pCM433 with pntABWT allele This study 

pHC36 pCM433 with pntABEVO allele This study 

pHC37 pCM433 with gshAWT allele This study 

pHC38 pCM433 with gshAEVO allele This study 

 
*Strain designation included to clarify correspondence with condensed nomenclature for WT (i.e., “0”) 
and EVO (“1”) alleles for the four loci in Fig. 2 (EM = CM702 = “0000”; EVO = CM1145 = “1111”). 
†Tcr, tetracycline resistance. 
‡Kmr, kanamycin resistance. 
§GenBank accession numbers available: pCM410 (FJ389188) and pCM410.1145 (FJ389189) 
 



Table S3. Parameters estimated from the fitness of single allele strains (mean fitness of all replicate 
experiments). 
 

Allele pntABEVO fghAEVO GBEVO gshAEVO 

θi 0.993 0.485  0.362 0.323 

λ i 1.083 1.061 1.067 1.363 
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